345 research outputs found

    Using a logical model to predict the growth of yeast

    Get PDF
    BACKGROUND: A logical model of the known metabolic processes in S. cerevisiae was constructed from iFF708, an existing Flux Balance Analysis (FBA) model, and augmented with information from the KEGG online pathway database. The use of predicate logic as the knowledge representation for modelling enables an explicit representation of the structure of the metabolic network, and enables logical inference techniques to be used for model identification/improvement. RESULTS: Compared to the FBA model, the logical model has information on an additional 263 putative genes and 247 additional reactions. The correctness of this model was evaluated by comparison with iND750 (an updated FBA model closely related to iFF708) by evaluating the performance of both models on predicting empirical minimal medium growth data/essential gene listings. CONCLUSION: ROC analysis and other statistical studies revealed that use of the simpler logical form and larger coverage results in no significant degradation of performance compared to iND750

    Homology Induction: the use of machine learning to improve sequence similarity searches

    Get PDF
    BACKGROUND: The inference of homology between proteins is a key problem in molecular biology The current best approaches only identify ~50% of homologies (with a false positive rate set at 1/1000). RESULTS: We present Homology Induction (HI), a new approach to inferring homology. HI uses machine learning to bootstrap from standard sequence similarity search methods. First a standard method is run, then HI learns rules which are true for sequences of high similarity to the target (assumed homologues) and not true for general sequences, these rules are then used to discriminate sequences in the twilight zone. To learn the rules HI describes the sequences in a novel way based on a bioinformatic knowledge base, and the machine learning method of inductive logic programming. To evaluate HI we used the PDB40D benchmark which lists sequences of known homology but low sequence similarity. We compared the HI methodoly with PSI-BLAST alone and found HI performed significantly better. In addition, Receiver Operating Characteristic (ROC) curve analysis showed that these improvements were robust for all reasonable error costs. The predictive homology rules learnt by HI by can be interpreted biologically to provide insight into conserved features of homologous protein families. CONCLUSIONS: HI is a new technique for the detection of remote protein homolgy – a central bioinformatic problem. HI with PSI-BLAST is shown to outperform PSI-BLAST for all error costs. It is expect that similar improvements would be obtained using HI with any sequence similarity method

    Locational distribution of gene functional classes in Arabidopsis thaliana

    Get PDF
    BACKGROUND: We are interested in understanding the locational distribution of genes and their functions in genomes, as this distribution has both functional and evolutionary significance. Gene locational distribution is known to be affected by various evolutionary processes, with tandem duplication thought to be the main process producing clustering of homologous sequences. Recent research has found clustering of protein structural families in the human genome, even when genes identified as tandem duplicates have been removed from the data. However, this previous research was hindered as they were unable to analyse small sample sizes. This is a challenge for bioinformatics as more specific functional classes have fewer examples and conventional statistical analyses of these small data sets often produces unsatisfactory results. RESULTS: We have developed a novel bioinformatics method based on Monte Carlo methods and Greenwood's spacing statistic for the computational analysis of the distribution of individual functional classes of genes (from GO). We used this to make the first comprehensive statistical analysis of the relationship between gene functional class and location on a genome. Analysis of the distribution of all genes except tandem duplicates on the five chromosomes of A. thaliana reveals that the distribution on chromosomes I, II, IV and V is clustered at P = 0.001. Many functional classes are clustered, with the degree of clustering within an individual class generally consistent across all five chromosomes. A novel and surprising result was that the locational distribution of some functional classes were significantly more evenly spaced than would be expected by chance. CONCLUSION: Analysis of the A. thaliana genome reveals evidence of unexplained order in the locational distribution of genes. The same general analysis method can be applied to any genome, and indeed any sequential data involving classes
    • …
    corecore